On-board recordings reveal no jamming avoidance in wild bats.

نویسندگان

  • Noam Cvikel
  • Eran Levin
  • Edward Hurme
  • Ivailo Borissov
  • Arjan Boonman
  • Eran Amichai
  • Yossi Yovel
چکیده

Animals often deal with situations in which vast sensory input is received simultaneously. They therefore must possess sophisticated mechanisms to select important input and ignore the rest. In bat echolocation, this problem is at its extreme. Echolocating bats emit sound signals and analyse the returning echoes to sense their environment. Bats from the same species use signals with similar frequencies. Nearby bats therefore face the difficulty of distinguishing their own echoes from the signals of other bats, a problem often referred to as jamming. Because bats commonly fly in large groups, jamming might simultaneously occur from numerous directions and at many frequencies. Jamming is a special case of the general phenomenon of sensory segregation. Another well-known example is the human problem of following conversation within a crowd. In both situations, a flood of auditory incoming signals must be parsed into important versus irrelevant information. Here, we present a novel method, fitting wild bats with a miniature microphone, which allows studying jamming from the bat's 'point of view'. Previous studies suggested that bats deal with jamming by shifting their echolocation frequency. On-board recordings suggest otherwise. Bats shifted their frequencies, but they did so because they were responding to the conspecifics as though they were nearby objects rather than avoiding being jammed by them. We show how bats could use alternative measures to deal with jamming instead of shifting their frequency. Despite its intuitive appeal, a spectral jamming avoidance response might not be the prime mechanism to avoid sensory interference from conspecifics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jamming avoidance response of big brown bats in target detection.

When searching for prey, big brown bats (Eptesicus fuscus) enhance the range of their sonar by concentrating more energy in the nearly constant-frequency (CF) tail portion of their frequency-modulated (FM) sweeps. We hypothesize that this portion of their signals may be vulnerable to interference from conspecifics using the same frequencies in their own emissions. To determine how bats modify t...

متن کامل

Rapid jamming avoidance in biosonar.

The sonar systems of bats and dolphins are in many ways superior to man-made sonar and radar systems, and considerable effort has been devoted to understanding the signal-processing strategies underlying these capabilities. A major feature determining the efficiency of sonar systems is the sensitivity to noise and jamming signals. Previous studies indicated that echolocating bats may adjust the...

متن کامل

Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds.

The echolocation behavior of Pipistrellus abramus during exposure to artificial jamming sounds during flight was investigated. Echolocation pulses emitted by the bats were recorded using a telemetry microphone mounted on the bats' backs, and their adaptation based on acoustic characteristics of emitted pulses was assessed in terms of jamming-avoidance responses (JARs). In experiment 1, frequenc...

متن کامل

A Comparative Model of Echolocation Jamming Avoidance Strategies in Bats

Echolocation is a powerful active sensory system, but it is susceptibility to jamming. Jamming occurs when calls of similar frequency, time, and amplitude coincide resulting in misperceptions of the surroundings. One strategy for avoiding jamming found in bats is to lower the emission rate of echolocation calls and follow a neighbor. However, bats are known to move in large groups that do not h...

متن کامل

Dynamics of jamming avoidance in echolocating bats.

Animals using active sensing systems such as echolocation or electrolocation may experience interference from the signals of neighbouring conspecifics, which can be offset by a jamming avoidance response (JAR). Here, we report JAR in one echolocating bat (Tadarida teniotis: Molossidae) but not in another (Taphozous perforatus: Emballonuridae) when both flew and foraged with conspecifics. In T. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 282 1798  شماره 

صفحات  -

تاریخ انتشار 2015